Gamma EPCA and the Itakura-Saito Distance
The cumulant of the gamma distribution is $G(\theta) = -\log(-\theta)$, so the the link function (its derivative) is $g(\theta) = \nabla_\theta G(\theta) = -\frac{1}{\theta}$. From the appendix, we know that $f(x) = g^{-1}(x) = -\frac{1}{x}$ and
\[\begin{aligned} F(x) &= \theta \cdot x - G(\theta) \\ &= f(x) \cdot x - G(f(x)) \\ &= -1 - \log(x). \end{aligned}\]
The Bregman divergence induced from $F$ is
\[\begin{aligned} B_F(p \| q) &= F(p) - F(q) - \langle f(q), p - q \rangle \\ &= -1 - \log p + 1 + \log q + \Big\langle \frac{1}{q}, p - q \Big\rangle \\ &= \frac{p}{q} - \log \frac{p}{q} - 1, \end{aligned}\]
so $B_F$ is the Itakura-Saito (Itakura and Saito, 1968) distance as desired. Further, the EPCA objective is
\[\begin{aligned} B_F(x \| g(\theta)) = \frac{p}{g(\theta)} - \log \frac{p}{g(\theta)} - 1 = -p\theta - \log(-p\theta) - 1. \end{aligned}\]