Pareto EPCA

Math

NameParetoEPCA
$G(\theta)$$-\log(-1 - \theta) + \theta \log m$
$g(\theta)$$\log m - \frac{1}{\theta + 1}$
$\mu$ Space[1]$\mathbb{R} \setminus \{ \log{m} \}$
$\Theta$ Spacenegative
Appropriate Dataheavy-tail
$m$$m > 0$ (minimum value)

Documentation

ExpFamilyPCA.ParetoEPCAFunction
ParetoEPCA(indim::Integer, outdim::Integer, m::Real; options::Options = Options(μ = 2, A_init_value = 2, A_lower = 1 / indim, V_init_value = -2, V_upper = -1))

Pareto EPCA.

Arguments

  • indim::Integer: Dimension of the input space.
  • outdim::Integer: Dimension of the latent (output) space.
  • m::Real: A known parameter of the Pareto distribution representing the minimum value in the support.
  • options::Options: Optional parameters for model initialization:
    • μ: Default value 2.
    • A_init_value: Initial value for matrix A (default: 2).
    • A_lower: Lower bound for matrix A (default: 1 / indim).
    • V_init_value: Initial value for matrix V (default: -2).
    • V_upper: Upper bound for matrix V (default: -1).

Returns

  • epca: An EPCA subtype for the Pareto distribution.
source
Tip

If your compression converges to a constant matrix, try processing your data to reduce the maximum (e.g., divide your data by a large constant, take the logarithm).

  • 1$\mu$ space refers to the space of valid regularization parameters, not to the expectation parameter space.