Poisson EPCA
Name | PoissonEPCA |
---|---|
$G(\theta)$ | $e^\theta$ |
$g(\theta)$ | $e^\theta$ |
$\mu$ Space[1] | positive |
$\Theta$ Space | real |
Appropriate Data | count, probability |
Poisson EPCA minimizes the generalized KL divergence making it well-suited for compressing probability profiles. Poisson EPCA has also been used in reinforcement learning to solve partially observed Markov decision processes (POMDPs) with belief compression (Roy et al., 2005).
Documentation
ExpFamilyPCA.PoissonEPCA
— FunctionPoissonEPCA(indim::Integer, outdim::Integer; options::Options = Options())
Poisson EPCA.
Arguments
indim::Integer
: Dimension of the input space.outdim::Integer
: Dimension of the latent (output) space.options::Options
: Optional parameters.
Returns
epca
: AnEPCA
subtype for the Poisson distribution.
- 1$\mu$ space refers to the space of valid regularization parameters, not to the expectation parameter space.