Bernoulli EPCA

Math

NameBernoulliEPCA
$G(\theta)$$\log(1 + e^\theta)$
$g(\theta)$$\frac{e^\theta}{1+e^\theta}$
$\mu$ Space[1]$(0, 1)$
$\Theta$ Spacereal
Appropriate Databinary

$G$ is the softplus function and $g$ is the logistic function.

Documentation

ExpFamilyPCA.BernoulliEPCAFunction
BernoulliEPCA(indim::Integer, outdim::Integer; options = Options(μ = 0.5))

Bernoulli EPCA.

Arguments

  • indim::Integer: Dimension of the input space.
  • outdim::Integer: Dimension of the latent (output) space.
  • options::Options: Optional parameters (default: μ = 0.5).

Returns

  • epca: An EPCA subtype for the Bernoulli distribution.
source
  • 1$\mu$ space refers to the space of valid regularization parameters, not to the expectation parameter space.