Getting Started
Installation
To install TaskGraphs.jl, start up Julia and type the following code-snipped into the REPL.
julia> ] # enter package mode by typing "]"
(@v1.4) pkg> add https://github.com/kylejbrown17/TaskGraphs.jl.git
Example
To construct and solve a predefined precedence-constrained multi agent task assignment and pathfinding (PC-TAPF) problem.
julia> using TaskGraphs
julia> solver = NBSSolver() # initialize a solver
NBSSolver{TaskGraphsMILPSolver{SparseAdjacencyMILP,Int64},CBSSolver{ISPS{AStarSC{NTuple{5,Float64}},NTuple{5,Float64}},NTuple{5,Float64}},Float64}
assignment_model: TaskGraphsMILPSolver{SparseAdjacencyMILP,Int64}
path_planner: CBSSolver{ISPS{AStarSC{NTuple{5,Float64}},NTuple{5,Float64}},NTuple{5,Float64}}
logger: SolverLogger{Float64}
julia> prob = pctapf_problem_1(solver) # initialize the problem
PC_TAPF{SearchEnv{CompositeCostModel{Tuple{MultiDeadlineCost{SumCost},FullCostModel{typeof(sum),Float64,ConflictCostModel{HardConflictTable{SparseArrays.SparseVector{Int64,Int64},SparseArrays.SparseMatrixCSC{Float64,Int64}}}},FullCostModel{typeof(sum),Float64,TravelDistance},FullCostModel{typeof(sum),Float64,NullCost},FullCostModel{typeof(sum),Float64,TransformCostModel{Float64,TravelTime}}},NTuple{5,Float64}},CompositeHeuristic{Tuple{EnvDistanceHeuristic,NullHeuristic,EnvDistanceHeuristic,EnvDistanceHeuristic,NullHeuristic},NTuple{5,Float64}},LowLevelSolution{GraphState,GraphAction,NTuple{5,Float64},CompositeCostModel{Tuple{MultiDeadlineCost{SumCost},FullCostModel{typeof(sum),Float64,ConflictCostModel{HardConflictTable{SparseArrays.SparseVector{Int64,Int64},SparseArrays.SparseMatrixCSC{Float64,Int64}}}},FullCostModel{typeof(sum),Float64,TravelDistance},FullCostModel{typeof(sum),Float64,NullCost},FullCostModel{typeof(sum),Float64,TransformCostModel{Float64,TravelTime}}},NTuple{5,Float64}}}}}(SearchEnv:
cache: PlanningCache:
closed_set: Set{Int64}()
active_set: Set([23, 8, 22, 6])
node_queue: DataStructures.PriorityQueue(22 => (0, 0.0),23 => (0, 1.0),6 => (1, Inf),8 => (1, Inf))
active task nodes:
v = 23 => OP(6)
v = 8 => R(2,4)
v = 22 => OP(5)
v = 6 => R(1,1)
route_plan: LowLevelSolution:
T: 0
1: [1 ]
2: [4 ]
)
julia> solution, cost = solve!(solver,prob) # solve it
(SearchEnv:
cache: PlanningCache:
closed_set: Set([18, 2, 16, 11, 21, 7, 9, 10, 19, 17, 8, 22, 6, 4, 3, 5, 20, 23, 13, 14, 15, 12, 1])
active_set: Set{Int64}()
node_queue: DataStructures.PriorityQueue{Int64,Tuple{Int64,Float64},Base.Order.ForwardOrdering}()
active task nodes:
route_plan: LowLevelSolution:
T: 0 1 2 3 4 5
1: [1 5 9 13 14 15 ]
2: [4 8 12 12 12 12 ]
, 5.0)
julia> optimal_status(solver) # check the solution status
true
If you want to build your own PC_TAPF problem from scratch:
# copied from TaskGraphs/scripts/pctapf_demo.jl
using TaskGraphs
## set up the environment
vtx_grid = initialize_dense_vtx_grid(4,4) # 4 x 4 grid world
# 1 2 3 4
# 5 6 7 8
# 9 10 11 12
# 13 14 15 16
env = construct_factory_env_from_vtx_grid(vtx_grid)
## Define the initial conditions of the robots
robot_ics = [
ROBOT_AT(1,2), # robot 1 starts at vertex 2
ROBOT_AT(2,9), # robot 2 starts at vertex 9
]
## Define the manufacturing project
spec = ProjectSpec()
# set initial conditions of "raw materials"
set_initial_condition!(spec,OBJECT_AT(1,4)) # object 1 starts at vertex 4
set_initial_condition!(spec,OBJECT_AT(2,16)) # object 2 starts at vertex 16
# define the operations that need to take place
op1 = Operation(Δt=2) # operation 1 has a duration of 2 time steps
# inputs
set_precondition!(op1,OBJECT_AT(1,8)) # object 1 must be at vertex 8 before op1 can begin
set_precondition!(op1,OBJECT_AT(2,12)) # object 2 must be at vertex 12 before op1 can begin
# outputs
set_postcondition!(op1,OBJECT_AT(3,7)) # object 3 appears at vertex 7 when op1 is completed
add_operation!(spec,op1)
# add a terminal operation with no outputs
op2 = Operation(Δt=0)
set_precondition!(op2,OBJECT_AT(3,13))
add_operation!(spec,op2)
## define solver
solver = NBSSolver()
# finalize problem construction (the solver is passed as an argument here
# because it determines what cost model is used for the problem)
prob = pctapf_problem(solver,spec,env,robot_ics)
# solve the problem
solution, cost = solve!(solver,prob)
# check if the problem was solved to optimality
@show feasible_status(solver)
@show optimal_status(solver)