Weibull EPCA
| Name | WeibullEPCA |
|---|---|
| $G(\theta)$ | $-\log(-\theta) - \log k$ |
| $g(\theta)$ | $-\frac{1}{\theta}$ |
| $\mu$ Space[1] | $\mathbb{R} / \{ 0 \}$ |
| $\Theta$ Space | negative |
| Appropriate Data | nonnegative continuous |
WeibullEPCA omits it the known shape parameter $k$ since it does not affect the Weibull EPCA objective.
Documentation
ExpFamilyPCA.WeibullEPCA — FunctionWeibullEPCA(indim::Integer, outdim::Integer; options::Options = Options(A_init_value = -1, A_upper = -eps(), V_lower = eps()))Weibull EPCA.
Arguments
indim::Integer: Dimension of the input space.outdim::Integer: Dimension of the latent (output) space.options::Options: Optional parameters for model initialization. DefaultNegativeDomain().
Returns
epca: AnEPCAsubtype for the Weibull distribution.
- 1$\mu$ space refers to the space of valid regularization parameters, not to the expectation parameter space.