Pareto EPCA
Math
| Name | ParetoEPCA |
|---|---|
| $G(\theta)$ | $-\log(-1 - \theta) + \theta \log m$ |
| $g(\theta)$ | $\log m - \frac{1}{\theta + 1}$ |
| $\mu$ Space[1] | $\mathbb{R} \setminus \{ \log{m} \}$ |
| $\Theta$ Space | negative |
| Appropriate Data | heavy-tail |
| $m$ | $m > 0$ (minimum value) |
Documentation
ExpFamilyPCA.ParetoEPCA — FunctionParetoEPCA(indim::Integer, outdim::Integer, m::Real; options::Options = Options(μ = 2, A_init_value = 2, A_lower = 1 / indim, V_init_value = -2, V_upper = -1))Pareto EPCA.
Arguments
indim::Integer: Dimension of the input space.outdim::Integer: Dimension of the latent (output) space.m::Real: A known parameter of the Pareto distribution representing the minimum value in the support.options::Options: Optional parameters for model initialization:μ: Default value2.A_init_value: Initial value for matrixA(default:2).A_lower: Lower bound for matrixA(default:1 / indim).V_init_value: Initial value for matrixV(default:-2).V_upper: Upper bound for matrixV(default:-1).
Returns
epca: AnEPCAsubtype for the Pareto distribution.
If your compression converges to a constant matrix, try processing your data to reduce the maximum (e.g., divide your data by a large constant, take the logarithm).
- 1$\mu$ space refers to the space of valid regularization parameters, not to the expectation parameter space.