References
- Azoury, K. S. and Warmuth, M. K. (2001). Relative Loss Bounds for On-Line Density Estimation with the Exponential Family of Distributions. Machine learning 43, 211–246.
- Boyd, S. and Vandenberghe, L. (2004). Convex Optimization (Cambridge University Press).
- Collins, M.; Dasgupta, S. and Schapire, R. E. (2001). A Generalization of Principal Components Analysis to the Exponential Family. Advances in Neural Information Processing Systems 14.
- Forster, J. and Warmuth, M. K. (2002). Relative Expected Instantaneous Loss Bounds. Journal of Computer and System Sciences 64, 76–102.
- Gowda, S.; Ma, Y.; Cheli, A.; Gwóźzdź, M.; Shah, V. B.; Edelman, A. and Rackauckas, C. (2022). High-Performance Symbolic-Numerics via Multiple Dispatch. ACM Commun. Comput. Algebra 55, 92–96.
- Itakura, F. and Saito, S. (1968). Analysis Synthesis Telephony Based on the Maximum Likelihood Method. In: Proceedings of the 6th International Congress on Acoustics (IEEE, Los Alamitos, CA); p. C–17–C–20.
- Karpinski, S. (2019). The Unreasonable Effectiveness of Multiple Dispatch. Conference Talk at JuliaCon 2019, available at
https://www.youtube.com/watch?v=kc9HwsxE1OY
. Accessed: 2024-09-13. - McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. 2 Edition, Chapman & Hall/CRC Monographs on Statistics and Applied Probability (Chapman & Hall/CRC, Philadelphia, PA).
- Mogensen, P. K. and Riseth, A. N. (2018). Optim: A mathematical optimization package for Julia. Journal of Open Source Software 3, 615.
- Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine 2, 559–572.
- Roy, N.; Gordon, G. and Thrun, S. (2005). Finding Approximate POMDP solutions Through Belief Compression. Journal of Artificial Intelligence Research 23, 1–40.