Bernoulli EPCA
Math
| Name | BernoulliEPCA | 
|---|---|
| $G(\theta)$ | $\log(1 + e^\theta)$ | 
| $g(\theta)$ | $\frac{e^\theta}{1+e^\theta}$ | 
| $\mu$ Space[1] | $(0, 1)$ | 
| $\Theta$ Space | real | 
| Appropriate Data | binary | 
$G$ is the softplus function and $g$ is the logistic function.
Documentation
ExpFamilyPCA.BernoulliEPCA — FunctionBernoulliEPCA(indim::Integer, outdim::Integer; options = Options(μ = 0.5))Bernoulli EPCA.
Arguments
- indim::Integer: Dimension of the input space.
- outdim::Integer: Dimension of the latent (output) space.
- options::Options: Optional parameters (default:- μ = 0.5).
Returns
- epca: An- EPCAsubtype for the Bernoulli distribution.
- 1$\mu$ space refers to the space of valid regularization parameters, not to the expectation parameter space.