Pareto EPCA
Math
Name | ParetoEPCA |
---|---|
$G(\theta)$ | $-\log(-1 - \theta) + \theta \log m$ |
$g(\theta)$ | $\log m - \frac{1}{\theta + 1}$ |
$\mu$ Space[1] | $\mathbb{R} \setminus \{ \log{m} \}$ |
$\Theta$ Space | negative |
Appropriate Data | heavy-tail |
$m$ | $m > 0$ (minimum value) |
Documentation
ExpFamilyPCA.ParetoEPCA
— FunctionParetoEPCA(indim::Integer, outdim::Integer, m::Real; options::Options = Options(μ = 2, A_init_value = 2, A_lower = 1 / indim, V_init_value = -2, V_upper = -1))
Pareto EPCA.
Arguments
indim::Integer
: Dimension of the input space.outdim::Integer
: Dimension of the latent (output) space.m::Real
: A known parameter of the Pareto distribution representing the minimum value in the support.options::Options
: Optional parameters for model initialization:μ
: Default value2
.A_init_value
: Initial value for matrixA
(default:2
).A_lower
: Lower bound for matrixA
(default:1 / indim
).V_init_value
: Initial value for matrixV
(default:-2
).V_upper
: Upper bound for matrixV
(default:-1
).
Returns
epca
: AnEPCA
subtype for the Pareto distribution.
If your compression converges to a constant matrix, try processing your data to reduce the maximum (e.g., divide your data by a large constant, take the logarithm).
- 1$\mu$ space refers to the space of valid regularization parameters, not to the expectation parameter space.